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The destabilizing effect of linear viscous damping i n  a non- 

conservative elast ic  system is investigated by studying the roots 

of the characteristic equation in addition to the s t a b i l i t y  criteria 

and by intmducing the concept of degree of instability. A generic 

relationship between critical loadings for no damping and for slight 

damping as  well as vanishing damping is established. I It i s  found that 

while the presence of mall damping may have Q destabilizing effect, 

proper interpretation of the limiting pbC8SS of vanishing damping 

leads to the same critical load as for IY) damp-. @--."tW 
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I n t r o d u c t b  

It has been discovered by Ziegler [l] a l i t t l e  more than a decade 

ago, t h a t  intern1 damping may have a destaMUzing effect in noncon- 

s e m t i v e  elastic system. 

elastic hinges as a model of an elastic bar with internal  damping and 

He considered a double p d u l m  wi th  visco- 

l e t  a tangential  force act a t  t he  free end. The critical loading 

obtained i n  complete absence of damping was found t o  be considerably 

higher than bp including damping a t  the outset  of the analysis and then 

l e t t i n g  the damping coefficients approach %em (vanishing damping) in 

t h e  expression for  t h e  cri t ical  force. 

This r a the r  surprising and paradoldkal finding was ascribed in 

later studies by Ziegler 123, [3] to the  possibi l i ty  that internal  

damping is inadequately represented by l i n e a r  damping forces which are 

l i nea r  combinations of t h e  generalized velocit ies and that the hysteresis 

effect should be taken into account. 

The destabilizing effect of damping was f u r t h e r  elaborated upon by 

Bolotin [ 4 )  who considered a general tvo-degree+f-freedom system not 

related t o  any particular mechanical model and who found additionally 

t h a t  the destabilizing effect i n  the presence of sl ight  and vanishing 

damping i s  highly dependent on the relat ive magnitude of damping oaef- 

f i c i en t s  i n  t h e  two degrees freedom. 

It is  the  a i m  of the  present investigation to make an attempt a t  

supplying some additional insight into the  destabilizing effects of 

l i nea r  relocity4ependent -ing in aonconservntire syattrpla, without 

raising the question here as to the dtabbllty of th is  m a g  wn?benism 



for o. r a i l i s t i c  system. For this purpose the system discussed by ’Zisglsr 

is reconsidered, and not only the stability conditions a r e  investigated 

but also the  mot s  of t h e  characteristic equations themselves. Plots of 

I these roots for various ranges of loading illustrate graphically how the  

I paradodcal ef fec ts  of vanishing damping are generated. Further, t h e  

results of t h e  mathematical s t ab i l i t y  investigations are interpreted i n  
I 
I physical terms by introducing the  concept of degree of instabi l i ty .  

These concepts permit t o  carry out a gradual $ransition from the  

CQSB of small damping to the case of vanishing damping and relate them 

t o  the  case of no damping. Finally, -me remarks are made with regard 

t o  possible behavior of an e la s t i c  bar with distributed parameters. 

The Mod& 

We consider a double pendulum, Fig. 1, composed of two r igid weight- 

less bars of equal length t ,  which carry concentrated masse3 y = 2m, 

3 = m. A 

load P applied at t h e  f ree  end i s  assumed to  be acting a t  an angle v2 

(follower force). and 

c(’p2- ‘pl) + b2(e2-. b) are induced. 

The generalized coordinates %, tp2 are taken to be small. 

A t  the hinges the restoring mments c 3  + 
, 

The kinet ic  energy T, the  dissipation h a t i o n  D, the potential 

energpv, and the generalized forces % and Q2 wet  



= p.t ( Q l  - q2) 

Q 2 = 0  

Lagrange's equations in the  form 

d2.. 
%- 

which, upon stipulating solutions of tbe  form 

(i = 1,2) w t  
Q~ = Ai" 

y ie ld  the characteristic equation 

3 
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F =  
C 

In  the  absence of dambiag (5 = B2 = 0) the  chamcteristia 

equation i s  a biquadratic 

2d; + ( 7 a ) r 3  + 1 = 0 

C r i t i c a l  Loa& 

From the assumed form of t h e  time-dependence f o r  the  coordinates 

‘pi and on t h e  basis of the  kinet ic  s t ab i l i t y  cr i ter ion,  it is evident 

t h a t  i f  a l l  four roots of t h e  characteristic equation are d is t inc t ,  the  

necessary and sufficient conditions for stability are that the real 

roots 

zero. 

which 

and t h e  real parts of the  complex mots should be a l l  negative or 

In case of equal roots tne genered solution of vi w i l l  have terms 

If t h e  real parts of equal roots contain powers of t as a factor. 

are negative, the  system w i l l  be stable (vibration w i t h  decreasing 

amplitude), hut if these real parts are zem or positive, stabil i ty will 

not exist (vibration wi th  increasing amplitude). 

h m h g  our attention f i rs t  to the  case of an initially Wdamped 

system, the  four roots of the Mquadratie equation as a function of F 

are 
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real pl,me (Id = 01, the imaginary plane (Rea = 0 )  and t h  

plane (F = 0) a r e  also shown i n  Fig. 2. 

mplex 

It is  found that there w i l l  dmy8 be two roots with positive 

real part if F > $ 
of equal roots whose real parts are all gem. 

stable  for F 2 Fe. 

imaginary and thus the system is stable. 

i n i t i a l l y  undamped system is presented i n  [-lo 

= 2.086 = Pe. For F = Fe there e d s t  two pair. 

Thus t he  system i 8  un-. 

?id pure For F < Fe all roots are d is t inc t  

A fur ther  discussion of an 

We consider next a slightlydamped system, assuming 5 = B2 = 0.01. 

No simple expressions for the four mots  of t h e  quart ic  equation exist; 

the  numerical results obtained are i l l u s t r a t ed  i n  Fig. 3 where a per- 

spective view is supplemented by three projections on t he  same three 

planes as in Fig. 2. Two m o t s  will have a positive real part for 

F > 1.464 = Fdo 

Stabi l i ty  can be investigated d i rec t ly  without determining the 

roots of the  characterist ic equation by applging the Routh-Hurvitt 

c r i t e r i a  i61, which require that a l l  coefficients p (j  = 0,. . . ,d) of 

the character is t ic  equation and the quant i t ies  
j 

be positive. 

fied, provided 

For positive damping them shbdSity Coaditiom are satis- 
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S =  

X =  

For t h e  system to be stable P mast aatinfy-the fdlowing three 

inequalities, where f l  = \/B,, 0 < < 

P < $ + l  2 h B 2  

Since 

for whatever 8 in its range, it is ewident that the  critical load will 

be governed by the third Inequality, %,e, 

which depends OR the ratio as w e l l  as the Plagnitudes of the  damping 

coefficients. 

For Bi << 1, an wall as In tbe lhlt of raniahing drrpbina, gd 
b e m a  



which is highly dependent on 8 and i s  i n  general smaller but never 

l a rger  than F The r a t io  of Fd to F versus 8 i s  plotted in Fig. I. 
8. e 

It is mted that when p = I + 5 42 = 11.07, F~/F@ rmahee i ts  madmura 

value 1. 

case, similar ta that found bp Bolotin 141. 

i t s  minim value 0.16; i . e . , t he  maximum destabilizing effect is about 

84$ in the present two-degree-f-freedom system, 

The destabilizing effect  is thus eliminated in this particular 

For = 0,  Fd/P, reaches 

The Case of V- 

The two disparate values of t h e  critical load for no damDing 

(Bi = 0)  and vanishing daarping (Bi * 0) j u s t i f y  a more detailed in -  

vestigation of t he  limiting pmcess as the damping coefficients approach 

zero. 

Let us examine first the l imiting pmcess for the roots of the 

characteristic equation. 

of equations 171 that If B, << 1 and F < 4.9U this equation will have 

It can be shown with the a id  of the theory 

four 

Then 

1 ' 1  f i A 2  

one can write 

2(YL+ s) = - 



vhere pol p1 and x are as defined earlier. For vdshing damping 

Hence Y l  = - 5, '12 = A* 

Thus 

and a substitution of these four mots into  the characteristic equation 

w i l l  show that they are the saw a8 In the ca8e of no damping. 

In the c8se of F 2 4.934, t h e  four mots w i l l  be all real for 

small Bi. Let 

In the limit of vanishing damDing one can show similarly that eikher 

5 = vl = 0 or ~1 = - v and u2 = vz. For either alternative, substi- 

tution into  the characteristic equation reveals thet the mots are the 
1 

same as i n  the case of no d a m w i n g .  

Thus the conclusion is  reached that whatever F the roots of the 

characteristic equation for no initial damping (Bi = 0)  are identical 
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of t h e  system, for some given i n i t i a l  conditions, and whatever F, w i l l  

be ident ical  i n  t h e  case of no damping (Bi = 0 )  and vanishing damping 

CBi' 0) . 
We focus attention next on t he  loading F i n  the two case9 and 

before passing t o  t h e  l imi t  consider small damping (Bi << 1) . 
t i v e  real mrt of t h e  roots of the  characteristic equation i n  t h e  range 

F < F < Fd for several small values of B2 and, as an example, B1 = 0 

(i.e. p = 0) have been calculated and the results are displayed i n  

Fig. 5 ,  where F i s  plotted as a function of Res1 for 9 values of B2. 

This Figure i l l u s t r a t e s  t h a t  f o r  the larger  values of B2,Fd represents the  

c r i t i c a l  load because for F > Fd some roots w i l l  have a non-vanishing 

posit ive real part. 

i n  a large increase of t h i s  real part. 

evea though Fd is s t i l l  s t r ic t ly  speaking t h e  critical load, its signi- 

ficance i s  lessened, because a small  increase of t h e  load above Fd w i l l  

not result any longer i n  a large increase of ReQ. 

ReQ w i l l  now be associated with small increase of a load which is s l igh t ly  

lower than Fe. 

conclude that during t h e  limiting process the  significance of Fd as a 

c r i t i c a l  load is gradually transferred to Fe, and a t  t h e  limit of vani- 

shing damDing (Bid 0 )  Fe has to be considered as the  cr i t ical  load. It  

i s  apparent now that this conclusion could only be reached by considering 

t h e  roots of the characteristic equation and not \Ir merely applying the  

stabil i ty criteria of Routh-Hunrlta. Further, the  reasons for the  sta- 

b i l i t y  criteria fielding different Critical loads for no damping and for 

The posi- 

e 

A small increase of the load above Fd w i l l  result 

For small values of B2, however, 

Large increase of 

For vanishing damping Rea = 0 for any F < Fe. U e  thus 
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Deerce of Instabi l i ty  

It was established i n  t h e  preceding section tha t  for vanishing 

dnmpiw (Bi* 0)  the four mots of the charaateristia equation become 

identical to those of no damping (Bi = 0 )  w h i l e  the s tab i l i ty  c r i te r ia  

alone would in general field disparate c r i t i ca l  loads i n  these tvo Cases. 

To establish a further connection between t h e  mathematically de r ived  

c r i t i ca l  loads for no damping (Bi = 0) and vanishing d m i n g  (Bi+ 0 )  it 

appears helpful  to  introduce into the discussion a concept which might 

be called "degree of instability" and which embodies a relaxation of t he  

concept of ins tab i l i ty  as used when applying the  kinetic stability cri-  

terion. 
baunded 

suitable disturbance results in aAmtion in t he  vicinity of the  equili- 

brium configuration, e.g., t h e  system is unstable if  a disturbance leads 

t o  oscillations with increasing amplitude ( f lu t te r  instabil i ty).  

this type of loss of s tab i l i ty  one can state that from a practical point 

of view it w i l l  certainly matter how fast t he  amplitudes increase. 

According to t h i s  latter criterion a system is  stable if a 

For 

For example, should a suitable i n i t i a l  disturbance be merely 

doubled in a t i m e  interval which is large as compared to, say, some 

reference Oeriod, while t he  duration of the system being subjected to 

a nonconservative force i s  by comparison relatively short, the system 

may be considered practically stahle, w h i l e ,  mathematidly of course, 

one would have t o  conclude that  it is unstable. 

In order t o  weaken t he  kinetic stability criterion, one could pre- 

scribe arbitrarily the allovable increase of the disturbance and wuld 

then obtain for a givers value of the load a t w i t i d  the ,  not W k e  
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i n  t h e  case of creep buckling. 

another measure of t h e  rate of amplitude increase. 

caying osci l la t ions,  where t h e  logarithmic decrement serves the purpose 

of quant i ta t ively assessing the rate of decay, we can use the same 

quantity r lao as a meamtaro of tho rat. of amplitude iaor.rse. 

A s  an alternative,  one could introduce 

By analogy to de- 

Thus 

A 
b = log 2 

*n+1 

where An i s  t h e  amplitude of the  osc i l la t ion  a t  a cer ta in  time t and 

i s  the  amulitude a t  t + T, where T is the period. In t h e  present *n+l 
pmblem, neglecting t h e  tenus of decaplng magnitude i n  the  general 

solution of vi, 6 w i l l  generally be time-independent for f l u t t e r  motions, 

except when t h e  character is t ic  equation has equal pure imaginary mots.  

The kinet ic  s t a b i l i t y  c r i te r ion  requires b 2 0 (i.9. An 2 An+,.). 

A negative b could properly be called t h e  logarithmic increment and i n  

a real system it is conceivable tha t  b may a t t a i n  a cer tain value bc i n  

a cer ta in  interval  of time without t h e  system losing i ts  s t a b i l i t y  i n  

any pract ical  sense. 

For f j  = %/B, = 1 the c r i t i c a l  load F is displayed as a function 

of B1 = B2 = B i n  Figs. 6 and 7 .  For however small but finite negative 

value of 6, the c r i t i d  load for vanishing damping (B 4 0 )  will always 

be t h a t  f o r  no damping (B  = 0), namely Fg. 

for small damping (B < 1) may be miller than Fe but for finite b ,  how- 

ever small, i s  always larger than Fd. For given b t he  value of (small) 

damping B which is associated with the minimum value of the critical 

load can be doteminod, 

However, t he  critical load 
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I For vanishing logarithmic increment ( b  -+ 0 )  t h e  function ? (B) 

approacnes a l imiting curve which w i l l  contain t h e  point Fd on t h e  

ordinate. For b = 0 t h e  stability region is closed, i.e.,points on 

the curve b = 0 in Fig. 7 are a t a b l e ,  including t he  point Fd on t h e  

ordinate. 

i n s t ab i l i t y ,  but belongs itself t o  the  Instability region. 

miting pmcess provides thus additional insight  i n to  the  generation 

of the cr i t ical  load Fd. 

For B = 0 it is  the  paint Fe which separates s t a b i l i t y  fmm 

This li- 

Font inuous Cant il eves 

An attempt vi11 be made now to  in te rpre t  t h e  results of the pre- 

ceding sections, established with the a id  of a simple two-degree-f- 

freedom model, as applied to  a continuous cantilever beam, which 

represents possibly a more realistic system. 

however, i s  not without difficulty.  

This internretation, 

We shall assume that t h e  i n t e r n a l  damping of t h e  continuous can- 

t i l eve r  can be represented by Voigt elements, i.e.,we use the  Sezawa 

beam theory [SI, and consider only the  two lower modes of motion. 

The ordinary d i f fe ren t ia l  equation governing each mbde Xi, of a canti- 

lever with no force a t  the free end, is of t he  form 

2 
i i + ~ x i + y 1 2 y i = o  

where y is  the  damping coefficient i n  t h e  stress-straln re la t ions  and 

E is bung's modulus. 

first two d e s  i r  thus 

The ratio of the damping coefflcientr of the.  



I . '  
1 

This  rat io  for t h e  continuous cantilever should now be compared with 

that of t h e  cantilever model and for t h i s  purpo80 one should uncouple 

the two equations governing the model. I t  is known [9], however, that 

vhenever a dissipation energy is accounted for, i n  addition ta kinetic  

and potential energies, such uncoupling can, i n  general, not be effected 

and this i s  the di f f icul ty  alluded to above. 

l 

In the system under can- 

sideration uncoupling bewmes possible i n  the upecial case given by 

8 = 1 ( i . e . ,  t j  = b2 = b) because in this case the dl~sipstlon function 

beumes proportional to the potenthl energy. 

The transformation 

y2 = flsin e + C ~ C O S  e 

leads to t h e  uncoupled equations 
.. 

+ (7 -&i)i + (7 = 0 
tr &C2 d2 

In this representation the r a t l o  of the damping meffiOic#rts is glven by 
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The 

original coordinates qi t he  r a t io  of the damping coefficients p has 
to  be taken i n  the vicinity of unity to correspond t o  the continuous 

and [3 are relatively close and one can conclude that i n  t h e  

cantilever. 

Further, for many structural materials the fraction of critical 

d-?mpiry Ei - - 3 2E is  b v n  to 

Since (with = 1) 

of the ortier of 10-3, 

and 

the fraction of critical damping in the first d e  will be 

Similarly, for the  seamd made it w i l l .  be 

c2 = 3.661 B 

Thus B is of the same order of magnitude as E ~ ,  i.e. loo3, and damping 

w i l l  have indeed a destabilizing effect, as seen from Fig. 6. 

Conclud im 

An examination of the roots of the characteristic equation and the 

introduction of the concept of degree of instability make it possible 

t o  establish a generic relationship between the cri t ical  loads for ILD 

damping and for  sIw17 and vanishing damping, Routh-Zhxnitz criteria 

done pmVed t0 be iasuffident d e t d n e  the load for 

. 



- ~ - -. I _-_I_- -.-1----e- --- ~- . - _ _ -  

15 

vanishing damping, which is t h e  same as for no damping. It is a s d l  

damping, rather than vanishing damping, which is responsiblo for t h e  

destabilizing effect. The strong dependence of the critical load on 

the ratio of the dnmping coefficianta, bowever, leaves a requirement 

f o r  fhrther investigation, which should include other damping 

mechanism, effects of rronllnearity and different types of nonwnstlf- 

vative forces. 
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CAPTIONS OF FIGURES 

1. Two-degree-of -freedom model 

2. Orthogra?hic projections and the perspective of the root curves 
of the characteristic equation with no damping 

3. Orthographic projections and the perspective of the root curves 
of the characteristic equation with damping 

4. 

5 .  

60 

Critical load versus ratio of  damping coefficients for Bi << 1 
Significance of the critical load Fd as B2 increases 

C r i t i c a l  load for  various degrees of instability versus small 
damping coefficients 

7 .  Critical load for various degrees of instability versus large 
damping coefficients. 
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The destabilizing effect of linear viscous damping i n  a non- 

consemative elast ic  system is investigated e studying the roots 

of the characteristic equation in  addition to the stability criteria 

and by intmducing the concept of degree of instability. 

relationship between crit ical  loadings for no damping and for slight 

damping as w e l l  as vanishing damping is estahlished, 

while the presence of small damping may heve a destabilizing effect, 

proper interpretation of the limiting p ~ c e s s  of d s h i n g  damping 

leads to the same critical load as for xm damping, 

A generic 

It i s  found that 
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Introductioq 

It has been discovered by Ziegler 111 a l i t t l e  more than a decade 

ago, that internal damping may have a des tab l l la ing  effect i n  normon- 

servative elastic system. 

elastic hinges as  a model of an elastic bar with internal damping and 

l e t  a tangential force act a t  the free end. 

obtained i n  complete absence of damping was found to be considerably 

higher than 

le t t ing the damping coefficients approach 2em (vanishing damping) in 

t h e  expression for t h e  cr i t ical  force. 

He considered a double pendulum with visco- 

The cr i t ica l  loading 

including damping a t  the outset of the analysis and then 

This rather surprising and paradoxical finding was ascribed i n  

l a t e r  studies by Ziegler i2], [3] to the possibility that internal 

damping i s  inadequately represented by l i nea r  damping forces dhich are 

linear mmbinations of the generalized velocities and that the hysteresis 

effect should be taken into account. 

The destabilizing effect of damping was further elaborated upon by 

Eblotin [ 4 ]  who considered a general two-degreedf-freedom system not  

related to any particular mechanical model and who found additionally 

that the destabilizing effect i n  the presence of s l i g h t  and vanishing 

damping is  highly dependent on the relative lnagnitude of damping mef- 

ficients i n  the two degrees freedom. 

It is t he  aim of the present investigation to make an attempt a t  

supplying some additional insight into the destabilising effects of 

linear relooitg-depeodent damping in nonconservatire systems, without 

raidng the qpestioa here as to tho cndhbillty of this mag mecheo imn 



2 

for  D r m l i s t i c  system. 

i s  reconsidered, and not only t he  stability conditions are investigated 

but a l so  the roots of t h e  characterist ic equations themselves. Plots  Of 

these  roots for various ranges of loading illustrate graphidly  how the 

paradoxkal effects of vanishing damping are generated. 

results of t h e  mathematical s tabi l i ty  investigations are interpreted i n  

physical terms by introducing t h e  concept of degree of ins tab i l i ty .  

For this purpose the  system discussed by 'ZioglW 

Further, t h e  

These concepts permit to carry out a gradual t rans i t ion  f r o m  the  

case of small damping to the case of vanishing damping and relate them 

t o  the  case of no damping. Finally, some ramarks are made with regard 

t o  possible behavior of an e las t ia  bar wlth dist r ibuted parameters. 

We consider a double pendulum, Fig. 1, composed of two r ig id  weight- 

less bars of equal length d ,  which carry concentrated ~~as3e3 y = 2m, 

n$ = m. A 

load P applied a t  t h e  free end i s  assumed to be acting at an angle q2 

(follower force). A t  the  hinges t he  restoring mmenta c g ~  + 44 and 

The generalized coordinates '9, q2 are taken to be small. 

c(ip2- 4) + b&$- 4) are induced. 

The kinet ic  energy T, the dissipation f'unction D, tihe potential 

energy V, and the gmeralized forces 9 and % are? 



are employed to establish the l inear equations of yotion 

3dztl+ (%+b2)4- (Pd-2c)q1+ d 2 G2- b2+2+ ( P4-o)~~ = 0 

d2.. 
%- 

which, upon stipulating solutions of the form 

(i = 1,2) w t  vi = Aie 

yield the characteristic equation 

PO 

Dl 

p2 

p3 

p4 

and the 

= 2  

= 5 + 6B2 

= 7 - 2F + BIB2 

= B  + B 2  1 

= 1  

di##rsio~ess quantities 

3 
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(i = 1,2) 

f n  t h e  absence of damning (5 = B2 f: O), the charactaristio 

equation is a biquadratic 

Cr i t i ca l  Lo a& : 

From the  assumed form of the time-dependence for t h e  coordinates 

'pi and on the  basis of the  kinetic s t a b i l i t y  cr i ter ion,  it is evident 

t h a t  if a l l  four roots of t h e  characterist io equation are d i s t inc t ,  t h e  

necessary and suff ic ient  conditions for s t a b i l i t y  are that t h e  real 

roots  and t h e  r ea l  parts of the  complex roots should be a l l  negative or 

zero. 

which contain powers of t as a factor. 

In case of equal roots tne general solution of wi wi l l  have terms 

If t h e  real parts of qual  roots 

are negative, t he  systeaa will be s tab le  (vibration w i t h  decreasing 

amplitude), but i f  these real parts are zero or positive, etability will 

not exist (vibration with increasing amplitude). 

Turning our at tent ion first to the  case of an in i t ia l ly  undamped 

system, t h e  four mots of t h e  biquadrntio equation as a function of F 

are 



5 

real plnne (Id2 = 01, t h e  imaginary plane (Rea = 0 )  ana t h s  complex 

plane (F = 0) are also shown i n  Fig. 2. 

It is found that there will always be two roots with positivo 

real part if F > 
of equal roots vhose real parts are all Eem. 

stable for F 2 Fe. 

imaginary and thus the system i s  stable. 

i n i t i a l l y  undamped system is presented i n  [SI. 

-u2 = 2.086 = Pa. For F = Pe there exist two pairs 

Thus the  system is  un- 

*id pure For F < Fe all roots  are dist inct  

A fur ther  discussion of an 

We consider next a s l igh t ly  damped system, assuming 5 = B2 = 0.01. 

No simple expressions for t h e  four m o t s  of the  quar t ic  equation exist; 

t h e  numerical results obtained are i l l u s t r a t ed  i n  Fig. 3 where a per- 

spective dew is suppleaaentsd by three projections on t he  same three 

planes as in Fig. 2. 

F > 1.464 = Fd. 

Tu0 mots will have a posit ive real part for 

Stab i l i t y  can be investigated d i r ec t ly  without determining the 

roots of t h e  characteristic equation bp applying the but.h-MurwitS 

criteria i67, which require that a l l  coefficients p ( j  = 0,  ...,4) of 

the  characteristic equation and the quantities 
1 

2 2 
X = ~ 1 ~ 2 ~ 3  pOp3 ~4 

be positive. 

fied, provided 

For positive damping these stability conditions are satis- 

= 2[- ? + $ (7 + %B2) > 0 p2 
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For the  system to be stable F must satisfy-the following three 

inequalities, where = %/B2, 0 < < 

F < s t n + s ) + l B B  2(p.c6) 2 1 2  

Since 

for whatever fl in its range, it is evident that the critical load will 

be governed by the thin3 inequality, I .e.,  

which depends on the ratio as w e l l  as the magnitudes of the damping 

coefficients. 



. .  

which i s  highly dewndent on 8 and is i n  general smaller but never 

larger than Pa. i s  plotted i n  Fig. 4. 

It is noted that when 8 = 4 + 5 42 = 11.07, Fd/F, reaches its maximum 

The ra t io  of Fd t o  Fe versus 

value 1. 

case, similar to  that found by Bolotin [‘I. 
i t s  minimUn value 0.16; i .e . , the maximum destabil izing effect is abut  

84$ i n  the present tvo-degree~f-freedom system. 

The destabil izing effect  is thus eliminated in this particular 

For 8 = 0, Fd/pd reachea 

The Case of V- 

The two disparate values of the critical load for no damDing 

(Bi = 0 )  and vanishing damping (Bi 4 0) j u s t i f y  a more detailed in- 

vestigation of t h e  l imi t ing  pmcesa as the  damping coefficients approach 

zero. 

L e t  us examine first t he  limiting process for t he  m o t s  of the  

character is t ic  equation. 

of equations [7 ]  that i f  Bi << 1 and F C C.9U thir equation will have 

It can be shown with the  a i d  of the  theory 

four complex toots. Let them mots be 

Then one can w r i t e  

2(Y1+ Ax) = - 



where p , pl and X are as defined earlier. For rSaisMng damping 
0 

and a substitution of these four roots into +,e characteris 

8 

ic equation 

will show that they 8 ~ 8  the saw a8 i n  the case of no damping. 

In the case of P 2 4.9l.4, the four mots will be all red for 

small Bi. Let 

.,I~'~ 
v1 f v 2 

In the limit of vanishing damping one can show similarly that either 

\t = vl = 0 or 3 = - vl and u2 = v2. For either alternative, substi- 

tution into the characteristic equation reveals that the roots are the 
A 

same as i n  the case of m damDing. 

Thus the conclusion i s  reached that whatever F the roots of the 

characteristic equation for no initial damping (Bi = 0) are identical  

to tbose of vanimhtag damp* (Bie 01, Thle hplios  that. the ootiona 



of tho system, for some given i n i t i a l  conditions, and whatever F, w i l l  

be ident ical  i n  the  case of no damping (Bi = 0) and vanishing damping 

'Bi' 0). 

W e  focus a t ten t ion  next on the loading F i n  the two cases and 

before passing to t h e  limit consider small damping (Bi << 1) . 
t i v e  real oart of t h e  roots of the characteristic equation i n  t h e  range 

t < F C Fd for several small values of B2 and, as an example, B1 = 0 

(i .e.  = 0) have been calculated and the  results are displayed i n  

Fig. 5 ,  where F i s  plotted a s  a function of Rep for 9 values of B2. 

This Figure i l l u s t r a t e s  that for the la rger  values of B2,Fd represents t he  

c r i t i c a l  load because for F > Fd some roots w i l l  have a non-vanishing 

posi t ive real part. 

i n  a large increase of t h i s  real part. 

even though Fd is still s t r i c t l y  speaking the  cr i t ical  load, i t s  signi- 

ficance i s  lessened, because a small increase of t h e  load above Fd will 

not result any longer i n  a large increase of ReQ. 

ReQ w i l l  now be associated with small increase of a load which is s l igh t ly  

lower than Fe. 

conclude that during t h e  l imiting process the  significance of Fa as a 

cri t ical  load is gradually transferred to  Fe, and a t  t h e  limit of vani- 

shing damping (ai- 0 )  Fe has to be considered as the critical load. It 

is apparent now t h a t  t h i s  conclusion could only be reached by considering 

the roots  of t h e  characteristic equation and not by merely applying the  

s t a b i l i t y  criteria of Routh-Hudto. Further, t he  reasons for t h e  sta- 

b i l i t y  criteria fielding different  critical loads for no damping and for 

vanishing damping am be better demtood 

danrpfw. 

The pad-  

e 

A s m a l l  increase of the  load above Fd w i l l  result 

For Smau values of B2, however, 

Large increase of 

For vanishing damping Reo= 0 for any F < Fe. We thus 

having amaidwed aanll 



.. to 

Deerce of Ins t ab i l i t y  

It was established i n  t h e  preceding section that for vanishing 

drrm;>in(: (Bi* 0)  the four roots of the charaoterist ia equation b e c o m e  

i d e n t i c a l  to those of no damping (Bi 2 0 )  wbile the  s t a b i l i t y  criteria 

alone would in general yield disparate c r i t f c a l  loads in these two cases. 

To es tab l i sh  a fu r the r  camection between the  mathematically derived 

critical loads f o r  no damping (Bi = 0) and vanishing darning ( B i 4  0) it 

appears helpful t o  introduce in to  the discussion a conceDt which might 

be called "degree of ins tab i l i ty"  and which embodies a relaxation of the 

concept of i n s t a b i l i t y  as used when applying t h e  kinet ic  stabil i ty cri- 

terion. 

suitable disturbance results i n  aAmotion i n  the  vicinity of t h e  equili- 

brium configuration, e.g.,the system is unstable If a disturbance leads 

t o  osc i l la t ions  wi th  increasing amplitude ( f l u t t e r  ins tab i l i ty )  . 
this type of loss of stabil i ty one can s t a t e  that from a prac t ica l  point 

AccaMting to thts latter cr i ter ion a system i s  stable if R 
bounded 

For 

of v iew it w i l l  cer ta inly matter how fast the amplitudes increase. 

For example, should a suitable initial disturbance be merely 

doubled i n  a time interval  which is large as compared to, say, some 

reference period, wh i l e  the  duration of t he  system being subjected to 

a nonconsemtive force is by comparison relatively short, the  system 

may be considered pract ical ly  stable, while, mathematically of course, 

one would have to  conclude t h a t  it i s  unstahle. 

In  order t o  weaken the  kinet ic  stability cr i ter ion,  one could pre- 

scribe a r b i t r a r i l r  the allowable fncrease of the disturbance and.wuld 

them obtain for a givm value of the load a critioril the, not unlike 



. 
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i n  tne case of creep buckling. As an al ternat ive,  one could introduce 

another measure of t h e  rate of amplitude increase. By analogy to  de- 

caping osci l la t ions,  where the logarithmic decrement semes the purpose 

of quant i ta t ively assessing t h e  rate of decay, we CM use the  same 

qtmntity almo a8 a m e a s u r e  O c  the rate of amplittrdo inorslr8e. Thu8 

A 
b = log A 

An+l 

where An i s  t h e  amplitude of the osc i l la t ion  a t  a cer ta in  t i m e  t and 

*n+l 
problem, neglecting t h e  tenus of  decaping magnitude in the  general 

solution of vi, b w i l l  generally be time-independent for f l u t t e r  motions, 

except when t h e  character is t ic  equation has equal pure imaginary roots. 

is t he  amditude a t  t + T, where T is  the period. In  t h e  present 

The kinet ic  stability cr i ter ion requires b 2 0 ( i .e .  An 2 An+l). 

A negative b could properly be called t h e  logarithmic increment a d  in 

a real system it is conceivable that b may a t t a i n  a cer ta in  value bc in  

a cer ta in  Interval  of t i m e  without t h e  system losing its s t a b i l i t y  i n  

any pract ical  sense. 

For f3 = %/B, = 1 t h e  critical load F is displayed as a function 

= B i n  Figs. 6 and 7. For however sad1 but f inite negative of Br = 

value of b ,  the  critical h a d  for vanIsh3ng damping (B 4 0) w i l l  always 

be t h a t  f o r  no damping (B = 0), namely Fe. 

for 4 1  damping (B < 1) may be smaller than Fe but for finite b, how- 

ever small, is always larger than Fd. For given b t he  value of (smal l )  

damping B which is associated with the miamam value of the crit ical  

load can be dotexmind. 

B2 

However, t he  critical load 



Po=. vanishing logarithmic increment ( b  * 0 )  t h e  function 7 (B) 

approacnes a l imiting curve which w i l l  contain t h e  point Fd on t h e  

ordinate. For b = 0 the s t ab i l i t y  region is closed, i.e.,points on 

the m e  b = 0 in Fig .  7 are atable,  including the point Fa on the 

ordinate. 

i n s t ab i l i t y ,  but belongs itself fio the  lnstabllitf region. 

miting process provides thus additional insight  Into the  generation 

of t h e  critical load Pd. 

For B = 0 it is the  point Fe which separates s t a b i l i t y  f r o m  

This li- 

Continuous Ckqtile V a 
1 

I .. 

An attemp$, .> w i l l  be made now t o  in te rpre t  the results of the  pre- 
.% 

ceding sectliqw, established w i t h  t h e  a id  of a simple two-degree-of- 

freedom mod@, as applied t o  a continuous cantilever beam, which 

represents possibly a more realistic system. 

however, is not without difficulty.  

This intermetat ion,  

We shall assume that t h e  i n t e r n a l  damping of t h e  continuous can- 

t i l e v e r  can be represented by Voigt elements, i.e.,we use the Sezawa 

beam theory [8], and consider only the  two lower modes of mtion .  

The ordinary di f fe ren t ia l  equation governing each mode XI, of a canti- 

lever  with no force a t  t h e  free end, is of the  form 

where y is the  damp- coefficient in t h e  stress-strain re la t ions  and 

E is bung's modulus. 

first two modes io thw 

The ratio of tho damp- coefficients of the  



2 

"2 

T h i s  ratio for the continuous cantilever should m u  be compared with 

that of the cantilever model and for t h i s  purpose one should uncouple 

the two equations governing the model. It  is known [9], however, that 

whenever a dissipation energy is  accounted for, i n  addition to kinetic  

and potential energies, such uncoupling CM, i n  general, not be effected 

and t h i s  i s  the d i f f i c u l t y  alluded t0 above. 

sideration uncoupling becomes possible i n  the special oBse given by 

J3 = 1 ( i . e . ,% = b2 = b) because in this case the dims$pation function 

In the system under con- 

becoxces proportional to the potential energy. 

The transfonnatfon 

% = J h  
1 

'p2 = -r Y1 + Y2 

vi th  

yl = ~ ~ ~ 0 s  e - Cpin e 

y2 = e + c2ws e 

leads to the uncoupled equations 

In this representation the  mtio of the damphg ooefflaienta l r  given by 



u ~. 
. .  

P 

The and [3 are relatively close and one can conclude t h a t  in the  

original coordinates pi t h e  ra t io  of the damping coefficients p has 
to be taken i n  the vicinity of unity to correspond to the  continuous 

cantilever. 

1 

and 

y = 

the fraction of critical damping in the first nude w i l l  be 

- ~ 1 7  -Jz = 0.7’75 B &1 - 
Similarly, fo r  the second made it w i l l  be 

e2 = 3.461 B 

Thus B i s  of the same order of magnitude as ci, i.0. loo3, and damping 

w i l l .  have indeed a destabilizing effect, as aeen from Fig. 6. 

Concludinp 

An examination of t h e  roots of the characteristic equation and the 

introduction of the concept of degree of ins tab i l i ty  make it possible 

t o  establish a generic relationship between the critical loads for no 

damping and for small and vanishing damping. Routh~urwita criteria 

alone proved t o  be insuf’ficfent to determine the critiual load for 
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vanishing damping, which is the same as for no damping. It i s  amall 

damping, rather than vanishing damping, which is responsiblo for  the 

destabilizing effect. The strong dependence of the critical load on 

the ratio of the dawping coefficimta, however, leaves a requirement 

for f'urther investigation, which should include other damping 

mechanism, effects of rwmllnearity and different types of mncollser- 

vative forces. 
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CAPTIONS OF FIGURES 

1. Two-degree-of-freedom model 

2. Orthographic projections and the perspective of the root curves 
of the characteristic equation w i t h  IY) damping 

I .  3. Orthographic projections and the perspective of the root curves 
of the characteristic equation with damping 

4. 

5 .  

6 .  

Critical load versus ratio of damping coefficients for Bi << 1 
Significance of the critical load Fd as B2 increases 

Critical load for various degrees of instability versus small 
damping coefficients 

7 .  Critical load for various degrees of instability versus large 
damping coefficients. 



. 
He&=mnn and Jong 

P 

m 



I 

c 
! 

C 



a 
3 

. 



M 
C 
0 
b 

. .  . 



b 
0 
x 
Ir) 

.L 

G 

t 
k 
x 
cv 

4 

0 

0 
9- m 

li, 

c 

a 

- c  
d 

tr) 
tr) m 
I I  
0 

ti'? 

L 

Ir) 
0 
0 
0 
0 

- 
0 



a 

m 

n 
CI - m  
0 0  

Y 
II 

40 

4 ... 

a 
0 
0 
0 

10 
0 

0 
9 

N 
0 
0 
d 

- 
0 



0 c s .  

c5 


